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A model of translational diffusion in the nematic phase is proposed. The generalized free-volume approach
is used to evaluate the diffusion coefficient of a small hard-sphere tracer among monodisperse rodlike particles
interacting via the Warner nematic potential. The free volume of the sample is visualized as a system of rigid
tubelike shells polydisperse in length~a Cohen-Turnbull distribution! dissolved in the rodlike matrix. The
equilibrium orientational distribution function of shells is found by means of the Flory lattice method. The
theory is specialized to typical nematogens and is critically compared with experimental results.
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PACS number~s!: 64.70.Md

I. INTRODUCTION

Experiments and numerical simulations have established
that owing to the close packing prevailing at normal liquid
densities and the short range of intermolecular repulsions
compared with the range of forces of attraction, the spatial
arrangements of molecules in liquids are determined first of
all by the sizes and shapes of their constituent molecules,
while intermolecular attractions generally have little effect
on the structures of typical liquids@1–3#.These findings are
fundamental for a theoretical description of bulk and mo-
lecular properties of liquids. On the one hand, thermody-
namic properties are commonly described by first treating
the configuration for a system of ‘‘hard’’ bodies whose only
interactions are via infinitely repulsive barriers upon contact
with one another, while intermolecular interactions are sub-
sequently introduced as perturbing effects only@1–7#. On the
other hand, molecular-dynamics theories of liquids often fol-
low a free-volume concept, i.e., it is assumed that each mol-
ecule is confined to a cage formed by its neighbors. The
molecule rattles inside this cage until fluctuations in density
enlarge the cage enough to permit a substantial displacement
of the molecule. In this model, translational or rotational
diffusion arises via continuous repetition of the process
@8–12#.

Onsager was the first to point out that, assuming sufficient
elongation of the needlelike molecules, the appearance of the
nematic phase might be a consequence solely of the rigidity
and shape anisotropy of the constituent molecules@13#.
Maier and Saupe, however, demonstrated that the presence
of soft anisotropic attractive forces between molecules may
also lead to the formation of the nematic phase, even for a
fluid of geometrically spherical molecules@14#. In turn,
Flory and Ronca@5,15# wedded the steric and Maier-Saupe
approaches by incorporating anisotropic dispersion forces
into the hard-rod calculations of the Flory lattice model@4#.
Further progress with the task has been made by Warner,
who calculated the mean field that a rod ‘‘sees’’ in a fluid of
other rods with which it interacts via both anisotropic disper-
sion and steric repulsive forces@6,16,17#. There is no longer

any doubt that both the anisotropic attractiveand repulsive
interactions are necessary to describe the isotropic-nematic
transition in thermotropic liquid crystals.

There are three fundamental theories of translational dif-
fusion in the nematic phase@10,18,19#. Franklin based his
theory on hydrodynamics of the nematic phase and ex-
pressed the principal components of the diffusion tensor,
D i andD' , the diffusion components parallel and perpen-
dicular to the nematic director, in terms of the nematic order
parameterS, molecular shape anisotropy, and viscosity coef-
ficients @18#. Chu and Moroi calculated the components of
the self-diffusion coefficients from a parametrized form of
the momentum autocorrelation function in the limit of per-
fectly ordered clusters@19#. Diogo and Martins’s approach to
diffusion in the nematic phase is based on the concept of the
free volume@10#.

However, although the nematic potential used in the theo-
ries of molecular dynamics accounts, to some extent, for ef-
fects associated with the shape anisotropy of nematogen
molecules~cf. Ref. @15#!, the presence of steric interactions
in the molecular dynamics of thermotropic nematogens has
not received appropriate attention. Our basic idea, therefore,
is to consider translational diffusion combining the free-
volume mechanism of diffusion with the Flory lattice model
of the nematic phase.

II. THEORY

Combined use of both models is particularly suitable for
studying diffusion of a small solute~probe! molecule in the
nematic phase. To evaluate the translational diffusion coef-
ficients of the solute we assume that it is present in the ne-
matic system in trace amounts only, i.e., its introduction does
not alter the thermodynamic properties of the neat nematic
system. We assume also that the probe molecule is spherical,
its diameter being the same as the width of the rodlike nem-
atogen molecule. In the proposed theory we follow the gen-
eralized free-volume concept of Turnbull and Cohen and as-
sume that the tracer is confined to a cage formed by the
nearest mesogenic neighbors@8–10,12#. The tracer rattles
inside the cage until fluctuations in density~redistribution of
the free volume within the liquid! create a large enough void
to permit a substantial translation of the tracer. There is di-*Electronic address: UFMOSCIC@cyf-kr.edu.pl
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rect evidence of the existence of such voids with dimensions
several times larger than the molecular size from computer
simulations@20# and in the simple mechanical analogs of
three-dimensional hard-sphere assemblies@21#. The large-
scale diffusion coefficient can be written as@8#

D5E
0

`

D~v !p~v !dv, ~1!

wherev5w2w0, w, andw0 are the cage free volume, the
cage overall volume, and the probe van der Waals volume,
respectively;p(v) is the probability density of occurrence of
v. D(v) ~the small-scale diffusion coefficient! is an apparent
contribution to the overall diffusion arising from the diffu-
sion in a cage.

Although density fluctuations produce cages of an arbi-
trary shape, the minimum model requirement is to enable
probe displacement byl , i.e., to provide an instantaneous
unobstructed tubelike path~free path!, with the tube diameter
the same as that of the tracer,dt and l1dt in length. The
remaining part of the cage, excluding the tubelike path, is
unimportant for the diffusion process and can be considered
as part of the surrounding path medium. It is therefore a
plausible assumption for the problem of diffusion that the
redistribution of free volume creates randomly tubelike cavi-
ties around the tracer, the length and orientation of a given
cavity being, in general, dependent on the tracers position.

It is inherent to the nature of the isotropic and nematic
phases that the probability that the free path is formed in an
arbitrary direction is uniform over space. Hence Eq.~1! can
be rewritten as

D~V!dV5E
l*

`

D~V; l !p0~ l !dl dV, ~2!

whereD(V; l )dV5D0( l )gl(V)dV is an apparent contribu-
tion arising from small-scale diffusion along the free path of
length l and occupying the solid angleV with respect to a
fixed reference direction in space.p0( l ) is the probability
density of finding the free path of lengthl and the geometric
factorgl(V) gives the probability of occurrence of this free
path at the probe position along the directionV. We intro-
duce as well a threshold free pathl * just large enough to
permit the minimum countable displacement of the probe
@8#.

Cohen and Turnbull commented that the in-cage diffusion
constant is only slowly varying with the cage size@8# and in
what follows will be considered merely as a scalling factor
@22# D0( l )5D0( l * ). In the isotropic phasegl(V) is uniform
over 4p of the solid anglegl(V)5(4p)21. Individual ran-
dom steps average out, resulting in macroscopic translation
characterized by the diffusion coefficient@cf. Eq. ~1!#

D iso5D0~ l * !E
l*

`

p0~ l !dl. ~3!

However, in the nematic phase the mesogen long axes are
orientationally ordered and the formation of a cavity tube
along the nematic director should be more frequent than of
the one created perpendicular to it. In what follows, length is
for convenience expressed in units ofdt , i.e., in axial ratio

units. The probability that a free path of lengthl has direc-
tion V is equal to the conditional probability of finding a
tubelike cavity of lengthl11 surrounding the probe oriented
in the V direction P( l11,V) weighted by the probability
that there is already an equilibrium cavity around the tracer
@23#, viz.,

gl~V!5gl~c!5P~ l11,c!/Pt , ~4!

wherePt is the probability of finding the equilibrium cavity
at the probe position. Due to the axial symmetry of the nem-
atic phase,gl(V) depends only on the angle between the free
path axis and the director,c. Assuming that diffusion along
the free path is still given byD0( l )5D0( l * ), Eq. ~2!, using
Eq. ~4!, yields the macroscopic diffusion coefficient in the
directionc:

Dnem~c!sincdc5D0~ l * !E
l*

`

gl~c!p0~ l !dlsincdc. ~5!

Equation~5! can now be used to obtain the two principal
components of the nematic phase diffusion tensor,D i and
D' , i.e., parallel (i) and perpendicular (') to the director,
respectively. Projecting small-scale diffusion onto both di-
rections and averaging over all possible orientations we have
@24#

D i5^Dnem~c!cos2c&c , ~6!

D'5 1
2 ^Dnem~c!sin2c&c , ~7!

where the subscript c emphasizes averaging over
0<u<p/2 and the factor of 1/2 accounts for the uniaxial
symmetry of the nematic phase.

To proceed further the probability functionsP( l ,c) and
Pt must be known@cf. Eq. ~4!#. Benefiting from our past
experience, we found that the Flory lattice method is particu-
larly suitable for evaluating these probabilities@25#. In the
usual way, the volume occupied by the nematic phase of
monodisperse rodlike molecules is subdivided into a cubic
array of linear dimension equal to the diameter of the ‘‘sol-
vent’’ particle and the width of the ‘‘solute’’ rod. All sites of
the lattice are occupied in such a way that each rod is con-
strained to consist of contiguous fully occupiedx cells, x
being the rod length-to-diameter axial ratio. The solvent par-
ticles fully occupy the remaining cells.

For our purpose, the free volume within the neat nematic
liquid, i.e., the difference between the liquid volume and the
volume of its van der Waals limit, will be treated as a neutral
‘‘solvent’’ in the lattice, the amount of which can be adjusted
appropriately. Next, we introduce a few tracer molecules into
the system, whose size is that of the lattice unit cell, in such
way that they can reside only in cells occupied by the free
volume. We assume further that the tracers are neutral, i.e.,
they interact with the neighoring particles via steric repul-
sions only and are thus a thermodynamically indistinguish-
able part of the solvent.

As mentioned already, we expect that the way in which
the free volume is distributed over the sample volume re-
flects the order of the nematic liquid. We assume that free-
volume cavities are tubelike empty shells whose diameter is
equal to the lattice unit cell and are polydisperse in the

5222 54DAGMARA SOKOLOWSKA AND JOZEF K. MOSCICKI



length. Their polydispersity will be represented by the ratio
of the numbernl of cavities with axial ratiol to the total
numbernc of the cavity ‘‘particles’’ in the system, which has
already been introduced as the probability of occurrence of
the free path of lengthl , p0( l )5nl /nc @cf. Eqs.~2! and~5!#.

All mesogens are assumed to interact with each other via
steric repulsions on contact as well as via Maier-Saupe dis-
persion forces. The tubelike cavities, on the other hand, in-
teract with each other and with mesogens only sterically.

The latter assumption, although it seems artificial, is,
however, equivalent to the more physically plausible as-
sumptions that~i! the volume of the sample remains constant
~thus the free volume is also constant!, i.e., the free-volume
tubes cannot overlap and the only process allowed is redis-
tribution of the free volume within the sample, so~ii ! the
free-volume tubes are built up from empty sites on the Flory
lattice in the same way the mesogen molecules are built from
occupied sites. The argument proceeds as follows.

The reference state in the Flory method is the state of
perfect orientational order (S51) of rodlike particles along
one of the lattice axes, sayZ. A solution of monodisperse
rods in the nematic state (S,1) is then represented by a
perfectly ordered solution of polydisperse in lengthsubpar-
ticles resulting from replacing each solute molecule by sev-
eral subparticles, their number and length depending on the
rod inclination fromZ. In any row parallel toZ the distribu-
tion of subparticles and vacant sites~free volume! is random
and is uninfluenced by conditions in neighboring rows@4#. It
is therefore a plausible expectation that when scanning along
each row we encounter indigenous sequences of empty sites
of random length. Our assumption that the free-volume tubes
interact sterically with each other and with mesogens intro-
duces a constraint to this randomness that the vacant sites in
each row are clustered to form a polydisperse in lengthsub-
tubes in accord with the free-volume tube orientation and
length distribution function. This modification is in close
agreement with the founding ideas of the free-volume theory
@9#, and of the nematic state theory of Cotter@26#. We be-
lieve, therefore, that the artificiality of the assumption is no
worse than those intristic to the lattice and free-volume theo-
ries.

For each species of the same length, the orientational dis-
tribution function results from the orientational equilibrium
they attain with other rods of the system. Application of the
Flory lattice formalism yields the equilibrium orientational
distribution functions

f l~c!5 f l8exp@2Aȳ ,xeff
~ l21!sinc# ~8!

for l species of the cavity shells and

f x~c!5 f x8exp@2Aȳ ,xeff
~x21!sinc#expS 32 cxSx xT*T sin2c D ,

~9!

for the monodisperse mesogen rodsx. Sx and ȳ are equilib-
rium values of the nematic order parameter and the Flory
disorder index, respectively, i.e., the mean projection of the
system rod onto the plane normal to the director;
Aȳ ,xeff

524ln(ȳ/xeff)/p, xeff being the rod average axial ratio
in the system~i.e., averaged over rodlike molecules and cavi-

ties!; xT* defines the scale of the mesogen-mesogen interac-
tion ~in units of absolute temperature! and is usually found
by fitting the theory to the clearing point,TNI of the particu-
lar system@17#. f l8 and f x8 are inherent to the theory scaling
parameters@5,15#. T is the system~absolute! temperature and
cx denotes the volume fraction of the mesogen rods. It
should be noted that Eq.~8! and the first exponent in Eq.~9!
arise purely from steric effects. The second exponent in Eq.
~9!, which is absent in Eq.~8!, results from the dispersion
forces present between the nematogen rods.

Equation ~8! gives the required probability
P( l ,c)5 f l(c) that the cavity of lengthl is declined byc
from the director. We find the remaining unknown probabil-
ity Pt by assuming that the equilibrium cage surrounding the
probe is equal to the lattice unit cell. It is easily obtained by
settingl to 1 in Eq.~8!:

Pt5 f 1~c!5 f 18 . ~10!

With the aid of Eqs.~8! and ~10! one can now evaluate the
conditional probability that the free path of lengthl ~axial
ratio units! is created at the position of the probe in the
directionc, gl(c) @cf. Eq. ~3!#:

gl~c!5P~ l11,c!/Pt5const3exp~2A[ ȳ ;xeff]
lsinc!.

~11!

One of the important concepts of the free-volume theory
is to make the free volume temperature dependent@8#. The
free volume in the sample is assumed to arise from the ther-
mal expansion at constant pressure, which gives, for the av-
erage free volume per rodl f ,

l f5a~T2Tg!x ~12!

or, in terms of the volume fraction of the system occupied by
the free volume,

cf512cx5
a~T2Tg!

11a~T2Tg!
, ~13!

wherea is the linear thermal expansion coefficient andTg is
the glass temperature, i.e., the temperature at which system
reaches its van der Waals limit. In the absence of clear ex-
perimental evidence to the contrary, we assume thatTg is
characteristic for the bulk material rather than for the diffu-
sion process, i.e., we assume that it does not depend on the
direction of diffusion~cf. below!.

The temperature-dependent free volume influences the
diffusion coefficient in the nematic phase in two distinct
ways. First, it makes the free path distribution function
p0( l ) temperature dependent@cf. Eq. ~2!#. Simple consider-
ations lead to@8,10–12#

p0~ l !5@ l *a~T2Tg!#
21exp$2 l /@ l *a~T2Tg!#%, ~14!

where l * is the threshold free path@cf. Eq. ~2!#. Second, as
p0( l ) andcf vary with temperature the orientational equilib-
rium of the rod-cavity mixture changes by changing the rela-
tive concentration of rods and cavities in the system, as mea-
sured by the equilibrium constantsSx , ȳ, andxeff . The latter
two enter into the factorAȳ ,xeff

in Eq. ~8!; therefore, although
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the steric exponent in Eq.~8! is explicitly temperature inde-
pendent, a subtle dependence on temperature enters into the
f l(c) @[P( l ,c)# exponent through the equilibrium values of
Aȳ ,xeff

.

Substitution ofp0( l ) @Eq. ~14!# andgl(c) @Eq. ~11!# into
Eq. ~5! yields, upon integration,

Dnem~c!sincdc5D̂0@ag l * ~T2Tg!#
21

3exp~2g l * !sin~c!dc, ~15!

whereg5(4/p)ln(ȳ/xeff)sinc1@al* (T2Tg)#
21 and the con-

stant D̂0 incorporates the scaling factors of the theory@cf.
@22# and Eq.~11!#. In general, there are no quantitative data
on the diffusion anisotropy in liquid crystals of high quality
and the anisotropy is customarily represented by a dimen-
sionless diffusion ratioD i /D' . Therefore,D̂0 cannot be
compared directly with experiment and we omit its detailed
evaluation, considering it merely as a scaling factor.

III. CALCULATIONS

In order to examine the effect of various parameters on
the translational diffusion anisotropy we specialize the above
result to values of the axial ratio and thermal expansion co-
efficient typical of nematogens. Detailed caculations require
specification of the values of the parameters appearing in the
theory. They are either defined from experimental data
(x,a,Tg) or obtained by fitting the theory to experimental
data (T* ). If particular values ofl * andT are then chosen,
values ofȳ andxeff result from the self-consistency condition
of the Flory theory.

Calculations proceeded as follows. For a given set of ex-
perimentally determined values$x,a,TNI ,Tg% a trial value of
l * is selected, thusp0( l ),cf , andxeff become quantitatively
defined@cf. Eqs.~14! and~13!#. Next, the equilibrium param-
eters of the system in the nematic state at the nematic-
isotropic transition are established numerically via the Flory
method in the usual manner@25,17#. The theoretical transi-
tion temperatureTNI

t is then identified with the experimental
clearing pointTNI and thus the last unknown parameterT* is
found, @cf., e.g., Eq.~7! of Ref. @17##. This procedure fixes
the temperature scale. The reduced temperature of interest
T/TNI below the clearing point is then selected. Since the
temperature variation changescf and xeff ~i.e., via the rod
axial ratio polydispersivity function!, the new iteration pa-
rameterT* 8 is found by findingTNI

t again for this new com-
position of the system. Only then do the self-consistent Flory
method calculations yield the equilibrium value ofȳ at
T/TNI and thus ofDnem, whenceD i /D̂0 and D' /D̂0, or
D i /D' may be calculated.

Several studies of the translational diffusion anisotropy
dependence on different parameters were performed. First,
the influence of the glass temperature on translational diffu-
sion in the model nematogen was studied. For this purpose a
p-methoxybenzlidene-p8-n-butylaniline ~MBBA ! like ma-
trix is chosen. Although MBBA does not show in the nem-
atic phase effects characteristic of the glass transition prox-
imity, for this study we introduced such a hypothetical
transition atTg5100 K ~220 K belowTNI

MBBA). As expected,

both principal diffusion coefficients clearly show a critical
slowing-down of the diffusion process on approachingTg
~cf. Fig. 1!. However, the anisotropy ratio seems nearly un-
influenced byTg . Detailed calculations not presented here
show that forTg /TNI increasing from 0 to 0.96,D i /D' in-
creases, but the change does not exceed a few percent. This
result is not surprising since the most pronounced depen-
dence of the anisotropy ratio on temperature enters in our
model through the orientational order dependence on tem-
perature. The latter is weakly temperature dependent far
away from TNI and essentially uninfluenced by the glass
temperature@27#. Therefore, in what follows, the dependence
on Tg in Eqs.~13!–~15! is neglected.

In Fig. 2 the isothermal diffusion anisotropy ratio
D i /D' in a MBBA-like matrix is shown as a function of the

FIG. 1. Small tracer diffusion in the MBBA-like rodlike matrix

with a hypothetical glassy transition: Arrhenius plot ofD i /D̂0 ,

D' /D̂0 , and D iso/D̂0 ~a.s. denotes arbitrary scale!. The inset
shows diffusion constants over the usual temperature range of the
nematic phase.

FIG. 2. Small tracer diffusion in the MBBA-like rodlike matrix:
D i /D' as a function of the critical free path for two different tem-
peraturesT/TNI50.995 (s) andT/TNI50.919, (n). cf is the free-
volume fraction in the sample.
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critical free-path lengthl * at two distinctively different tem-
peratures in the nematic phase:T/TNI50.995, which is
equivalent to the free-volume fraction ofcf50.205, and
T/TNI50.919, corresponding tocf50.192@cf. Eq. ~13!#.

The results of calculations ofD i /D' as a function of
reduced temperatureT/TNI for a few values ofl * are shown
in Fig. 3. Ranges ofT/TNI and l * values~0.919–0.995! and
~0.4., 0.5, and 1.4!, respectively, are fitted to the experimen-
tal temperature range and experimental data onD i /D' of
MBBA @28,29#.

Finally, in Fig. 4 the diffusion anisotropy is shown as a
function of the host molecule axial ratio. For this purpose we
selected seven typical thermotropic nematogens, the axial ra-
tio of which ranged fromx53.6 to 5.2@15#. Unfortunately,

the volume thermal expansion coefficient is known only for
PAA in this set of nematogens,a59.431024 @30#. In order
to get a reasonable estimate of a general trend in the
D i /D' dependence onx, we considered two limiting experi-
mental values ofa; 0.231023 and 1.631023 K 21 @30#.

IV. DISCUSSION

The results shown in Figs. 2–4 all are representative for
the most typical values of the axial ratiox53.625.2 @15#
and thermal expansion coefficienta5(2216)31024 K 21

@30# for nematogens. The temperature-dependent study is
specialized to MBBA, a ‘‘classic’’ room-temperature nem-
atogen for which parameters are reasonably well established,
xMBBA.3.9, aMBBA.831024 K 21 @31#, andTNI

MBBA5320
K @30#, and for which diffusion data are available for differ-
ent tracers@28,29#. Unfortunately, diffusion data in nemato-
gens obtained by different methods are very inconsistent
with each other@cf. Figs. 9 and 10 of Ref.@32##, and a com-
parison between theory and experiment can at best be made
only semiquantitatively.

The most interesting problem we tried to address is the
critical ~or threshold! free-path length, sufficient for the
minimum countable displacement of the probe, which is the
fundamental parameter in the free-volume approach to diffu-
sion @10,11#. Inspection of Fig. 2 reveals that the anisotropy
ratioD i /D' is indeed quite sensitive to the critical free-path
lengthl * , increasing rather dramatically asl * increases. Fur-
thermore, the increase is more pronounced at lower tempera-
tures. A comparison of this result with experimental data on
D i /D' , which ranges from 1 to about 4 depending on the
tracer size, its size compatibility with the solvent molecule
size, and also tracer concentration@31# shows that the critical
free path for a small spherical probe should not exceed
1–1.5, i.e., it should be of the order of the probe size. This is
very well demonstrated in Fig. 3, where we compare the
calculated anisotropy ratio vs normalized temperature with
the available experimental data for tracer diffusion in MBBA
@28,29#. On the one hand, we find that diffusion of a small
methane molecule in MBBA@28# is well modeled by our
theory with l *.0.420.5. On the other hand, description of
diffusion of a larger methyl red~MR! molecule requires
l *.1.4 or so. Both tracers are nearly spherical, but while the
diameter of methane is half of the host molecule width, the
diameter of MR is comparable with the width. Thus, by com-
paring l * with the diffusant size we get the intuitively ac-
ceptable result that the minimum countable step corresponds
to the diffusant size@8#.

The temperature dependence ofD i /D' shown in Fig. 3
reflects first of all the increasing orders of the system on
lowering the temperature. The predicted rate at which
D i /D' changes with temperature decreases as the tempera-
ture falls away fromTNI , as a consequence of the tempera-
ture dependence of the free-path orientational distribution
function. Not surprisingly this effect is less pronounced for
small displacements~0.4,0.5! than for larger ones~1.4!, since
the probability of creation of short free-path tubes is more
uniform over the whole solid angle than for the longer tubes.
Although the calculated rate seems to be somewhat smaller
than that observed experimentally, differences between theo-

FIG. 3. Small tracer diffusion in the MBBA-like rodlike matrix:
D i /D' as a function of reduced temperature for three different
values ofl * . For comparison, experimental results are also shown
for methane@26# (s) and MR diffusing in MBBA @27# ~1!.

FIG. 4. Small tracer diffusion in different rodlike matrices, at
TNI226 K, l *50.4, and two limiting values ofa: 1631024 K21

(L) and 231024 K21 (n). s is the numerical result for PAA
parameters~i.e., a59.431024 K21 @29#!, andd is the experi-
mental result for MBBA@27#.
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retical and experimental curves remain within experimental
error, e.g., for methane in MBBA@28# ~cf. Fig. 3!. Such a
weak temperature dependence of the anisotropy ratio is char-
acteristic for nearly all results of translational diffusion an-
isotropy studies@31#; it is routinely found for both tracer and
self-diffusion that away fromTNI the temperature depen-
dence of the principal diffusion coefficients in the nematic
phaseD i andD' is Arrhenius-like, with the difference be-
tween the two activation energies lying within experimental
error.

We found it interesting to compare diffusion of the same
spherical tracer in different rodlike nematic solvents~cf. Fig.
4!. In the absence of sufficient experimental data we consid-
ered model solvents with two limiting values of the thermal
expansion coefficient.D i /D' increases essentially linearly
with the solvent axial ratiox, the increase being somewhat
more rapid for smallera. Experimental data should then fall
within these boundary lines, as shown in Fig. 4 for PAA
~predicted! and MBBA ~experimental!. Nevertheless, the in-
crease is weak, i.e., no more than 10% forx increasing from
3.5 to 5.5. This is in good quantitative agreement with ex-
perimental results, showing very similar values of the anisot-
ropy ratio in different nematic solvents.

Although the theory does not address the isotropic phase,
we find it interesting to compare the diffusion coefficient
behavior in the nematic and isotropic phases. First of all, the
self-consistency test showed that in the absence of the nem-
atic ordering the diffusion anisotropy diminishes as ex-

pected. The calculated normalized diffusion coefficient in the

isotropic phaseD iso/D̂0 shows a typical Arrhenius behavior
in temperature~cf. Fig. 1!. On extrapolating to the isotropic-
nematic phase transition we find, however, a non-negligible
jump in the diffusion coefficient values in the isotropic and
nematic phases. Although the difference is small, such a re-
sult is in a good agreement with experimental results as well
as theoretical predictions of Taoet al. @33#. A quantitative
comparison is beyond the scope of the present paper, but we
want to emphasize that both theories account for the
orientation-dependent component of the density~in our case,
the free volume!. In the present theory that contribution to
the density enters the equilibrium orientational distribution
function via the parametersxeff , ȳ, andT* with particular
values depending on the form of the spatial distribution of
the cavities. In summary, our model shows good quantitative
agreement with the available experimental data for tracer dif-
fusion in nematic solvents, for diffusants comparable in size
to the width of the matrix molecules.
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